Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Inverses of Triangular Toeplitz Matrices

This short note provides an improvement on a recent result of Vecchio on a norm bound for the inverse of a lower triangular Toeplitz matrix with nonnegative entries. A sharper asymptotic bound is obtained as well as a version for matrices of finite order. The results are shown to be nearly best possible under the given constraints. 1. Introduction. This paper provides an improvement on a recent...

متن کامل

Characterizing the inverses of block tridiagonal, block Toeplitz matrices

We consider the inversion of block tridiagonal, block Toeplitz matrices and comment on the behaviour of these inverses as one moves away from the diagonal. Using matrix Möbius transformations, we first present an O(1) representation (with respect to the number of block rows and block columns) for the inverse matrix and subsequently use this representation to characterize the inverse matrix. The...

متن کامل

On SSOR-like preconditioners for non-Hermitian positive definite matrices

We construct, analyze and implement SSOR-like preconditioners for non-Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew-Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR-like iteration methods as well as the cor...

متن کامل

On the Worst-case Convergence of Mr and Cg for Symmetric Positive Definite Tridiagonal Toeplitz Matrices

We study the convergence of the minimal residual (MR) and the conjugate gradient (CG) method when applied to linear algebraic systems with symmetric positive definite tridiagonal Toeplitz matrices. Such systems arise, for example, from the discretization of one-dimensional reaction-diffusion equations with Dirichlet boundary conditions. Based on our previous results in [J. Liesen and P. Tichý, ...

متن کامل

Positive Integer Powers of the Tridiagonal Toeplitz Matrices

In this paper we present an explicit expression for the arbitrary positive integer powers of the tridiagonal Toeplitz matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ETNA - Electronic Transactions on Numerical Analysis

سال: 2018

ISSN: 1068-9613,1068-9613

DOI: 10.1553/etna_vol48s362